TEMA 8 FUNCIONES Y GRÁFICAS


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 8 FUNCIONES Y GRÁFICAS"

Transcripción

1 TEMA 8 FUNCIONES Y GRÁFICAS 8.1 Las funciones y sus gráficas Tareas : todos los ejercicios de la página 146 Tareas : todos los ejercicios de la página Crecimiento y decrecimiento de una función Tareas : todos los ejercicios de la página 148 a. El dominio de definición de la función es el intervalo de tiempo comprendido entre el 1 de mayo de 2003 y el 30 de abril de 2004 b. La función es constante entre el 1 de junio de 2003 y el 30 de agosto de

2 2. c. La función presenta un máximo el 1 de febrero de 2004 y presenta un mínimo el 1 de diciembre de 2003 a. María adelgazó en tres intervalos de tiempo: i. del 1 de mayo al 1 de junio de 2003 ii. del 1 de septiembre al 1 de diciembre de 2003 iii. del 1 de febrero al 1 de mayo de 2004 b. María ganó peso entre el 1 de diciembre de 2003 y el 1 de febrero de 2004 Tareas ; todos los ejercicios de la página Tendencias de una función a. 1 segundo b. 0.5 segundos Tareas : todos los ejercicios de la página Discontinuidades. Continuidad Tareas : todos los ejercicios de la página Expresión analítica de una función 2

3 2. tiempo (h) t espacio (km) t Expresión analítica: Espacio velocidad tiempo e 20t 3. velocidad (km/h) v tiempo (h) v Expresión analítica: Tiempo espacio velocidad t 20 v 4. tiempo (h) t importe del tiempo de trabajo (euros) t importe total (euros) t Expresión analítica: T 30 15t 5. A x 2 3

4 A x x x2 Tareas : todos los ejercicios de la página 152,153 EJERCICIOS Y PROBLEMAS a. Las variables son tiempo y altura. El tiempo en minutos cada dos cuadrados son 2 min La altura en metros, cada dos cuadrados son 100 m El dominio de definición (valores que puede tomar la variable independiente que es el tiempo) es 0, 23 (es decir, todos los valores comprendidos entre 0 y 23, ambos inclusive) El recorrido (valores que toma la variable dependiente que es la altura) de la función es 0, 500 (es decir, todos los valores comprendidos entre 0 y 500, ambos inclusive) b. Entre el minuto 0 y el minuto 5 el globo pasa de 0 m a 300 m Entre el minuto 5 y el minuto 9 el globo pasa de 300 m a 400 m Por lo tanto, crece más rápidamente de entre 0 y 5 min c. Tiende a estabilizarse en 500 m. lim t At 500 d. El globo parte del suelo para ascender, al principio en poco tiempo asciende rápidamente para luego ir estabilizando su altura y navegar casi siempre a la misma. Tareas : 2,3 4 4

5 a. La oscilación es menor en la gráfica II pues es una suave onda. b. Las gráficas son las I y la III pues cuando una tiene altas temperaturas, la otra las tiene bajas, y viceversa. c. La gráfica IV es absurda pues la temperatura no puede estar subiendo indefinidamente. d. Para el tiempo (t), que está en el eje horizontal, elegimos meses y cada dos cuadrados es un mes, un año. Para la temperatura (T), que está en el eje vertical, elegimos de 0º a 50º y cada cuadrado es 5º. e. El dominio son los meses del año. En la ciudad correspondiente al gráfico I, en los meses de "invierno" tienen temperaturas más altas que en los meses de "verano". En la ciudad correspondiente al gráfico II las temperaturas son muy suaves a lo largo de todo el años con pocas variaciones. Es un clima cálido. Tareas :5,6 7 Teniendo en cuenta lo realizado en el tema anterior para resolver sistemas de ecuaciones de forma gráfica, las expresiones analíticas i e iv, se corresponden con representaciones lineales (B y D). Ahora falta averiguar quien es quien. Para ello, damos valores a la x: y si x 0 y resuelto nada. Las dos rectas pasan por ese punto, por lo que no hemos 5

6 si x 2 y y Claramente el punto 2, 3 está en B, mientras que 2,1 está en D.Entonces la i B, iv D Para hallar los otros emparejamientos, habremos de darles valores a la x, para hallar los correspondientes valores de las y. Luego, habrá que buscar dichos puntos en las gráficas que faltan. si x 2 y y está en C. La conclusión es que ii C, iii A Tareas : 8,9 10 Claramente el punto 2, 3 está en A, mientras que 2, 8 a. El tiempo total empleado es h La otra variable es el espacio; se va a una distancia de 150 km, está un tiempo ahí, y luego vuelve a cero. b. v e t 150 km 2 h c. v e t 150 km 2. 5 h Tareas : 11, km/h km/h 6

7 Tareas : 14,15,16 17 a. b. Los mínimos relativos corresponden a 0, 40, 80 segundos (la canastilla está al nivel del suelo) Los máximos relativos corresponden a 20, 60 segundos (la canastilla alcanza la máxima altura) 7

8 c. Si, de período 40 segundos. d s es decir, tres vueltas completas y 30 segundos de la vuelta cuartaentonces estamos aproximadamente a 8 m del suelo. Tareas : a. b. El dominio de definición (valores que puede tomar la variable independiente que en este caso es el tiempo en horas) es 4, 9 (es decir, todos los valores comprendidos entre -4 y 9 inclusive) El recorrido de la función (valores que puede tomar la variable dependiente que en este caso es la temperatura en ºC) es 4, 4 c. El corte con el eje horizontal es en el punto El corte con el eje vertical es en el punto 8

FUNCIONES 1 REPRESENTACIÓN DE PUNTOS III IV C 1

FUNCIONES 1 REPRESENTACIÓN DE PUNTOS III IV C 1 FUNCIONES REPRESENTACIÓN DE PUNTOS Un punto en el plano queda localizado por sus coordenadas. Estas constituyen un par ordenado de números que se escribe entre paréntesis. El primero, x, (representado

Más detalles

TEMA 7 FUNCIONES Y GRÁFICAS

TEMA 7 FUNCIONES Y GRÁFICAS 7.1 Las funciones y sus gráficas Actividades página 132 1. Observando la gráfica: TEMA 7 FUNCIONES Y GRÁFICAS Responde: a) A qué altura se encuentra el nido? A 110 m, pues es el punto del que parte, y

Más detalles

3º ESO TEMA 7.- FUNCIONES Y GRÁFICAS. Página web del profesor: Profesor: Rafael Núñez Nogales

3º ESO TEMA 7.- FUNCIONES Y GRÁFICAS. Página web del profesor:  Profesor: Rafael Núñez Nogales 3º ESO TEMA 7.- FUNCIONES Y GRÁFICAS Página web del profesor: http://www.iesmontesorientales.es/mates/ 1.-LAS FUNCIONES Y SUS GRÁFICAS. (Págs: 13 y 133) 1.1.- Qué es una función? Esta gráfica representa

Más detalles

Matemáticas I. 1 o de Bachillerato - Suficiencia. 13 de junio de 2011

Matemáticas I. 1 o de Bachillerato - Suficiencia. 13 de junio de 2011 Matemáticas I. o de Bachillerato - Suficiencia. de junio de 20. Juan y Ana ven desde las puertas de sus casas una torre de televisión situada entre ellas bajo ángulos de 5 y 60 grados. La distancia entre

Más detalles

PÁGINA Representa: a) y = 2x. b) y = 2 3 x. c) y = 1 4 x. d) y = 7 3 x. 2 Representa: a) y = 3 b) y = 2 c) y = 0. d) y = 5

PÁGINA Representa: a) y = 2x. b) y = 2 3 x. c) y = 1 4 x. d) y = 7 3 x. 2 Representa: a) y = 3 b) y = 2 c) y = 0. d) y = 5 Soluciones a las actividades de cada epígrafe PÁGINA 6 Pág. Representa: a) y = x y = x y = x 3 b) y = 3 x c) y = x y = x d) y = 7 3 x 7 y = x 3 Representa: a) y = 3 b) y = c) y = 0 y = 3 y = 0 y = d) y

Más detalles

TEMA 6: FUNCIONES Y GRÁFICAS. y = - t2 + 10t ---->

TEMA 6: FUNCIONES Y GRÁFICAS. y = - t2 + 10t ----> 1. INTERPRETACIÓN DE GRÁFICAS. 1.La siguiente gráfica muestra las ventas de una librería situada frente a un colegio: a) La velocidad del A fue de km/h. b) El montañero B fue a primera hora a una velocidad

Más detalles

1. Calcular el dominio de f(x)= 2. Averiguar en qué valores del intervalo [0,2 ] está definida la función. 3. Calcular

1. Calcular el dominio de f(x)= 2. Averiguar en qué valores del intervalo [0,2 ] está definida la función. 3. Calcular . Calcular el dominio de f()= ln(0 ) ln. Averiguar en qué valores del intervalo [0,] está definida la función f()= 3 sen 3 3sen 3 0 lim 3 5 4 3. Calcular 4. Averiguar el valor de k para que la función

Más detalles

Tema 1. Racionales 2 2'4 0'1 2'1 1'15 3'1 1' Representa en la recta racional las siguientes fracciones:

Tema 1. Racionales 2 2'4 0'1 2'1 1'15 3'1 1' Representa en la recta racional las siguientes fracciones: Tema 1. Racionales 1.- Representa en la recta racional las siguientes fracciones: -1 y 4 b) - y 1. Calcula el valor de las siguientes expresiones: 7 5 4 1 4 b ) : c ) d) 8 4 1 5 5 : : 10 7 9 7 5 6 1 6

Más detalles

PÁGINA El precio de un kilogramo de arroz es de 1,5. Representa, como en los ejemplos anteriores, la función peso 8 coste.

PÁGINA El precio de un kilogramo de arroz es de 1,5. Representa, como en los ejemplos anteriores, la función peso 8 coste. Soluciones a las actividades de cada epígrafe PÁGINA 7 1 El precio de un kilogramo de arroz es de 1,5. Representa, como en los ejemplos anteriores, la función peso 8 coste. COSTE ( ) 1 1 1 ARROZ 8 1 5

Más detalles

Utilidad de las funciones y sus gráficas. Interpretación

Utilidad de las funciones y sus gráficas. Interpretación unidad 7 Funciones Utilidad de las funciones y sus gráficas. Interpretación Página 1 Las funciones describen fenómenos mediante relaciones entre las variables que intervienen. Observando la gráfica de

Más detalles

< variable independiente < variable dependiente

< variable independiente < variable dependiente Estudiar en el libro de Texto: Pág. 152 y 156 EL MODELO LINEAL : y = mx + n Algunos ejemplos Una empresa decide alquilar una fotocopiadora por una cantidad fija anual de 2000 euros, más un coste de 0,05

Más detalles

EL BLOG DE MATE DE AIDA 4º ESO: apuntes de funciones pág. 1 FUNCIONES

EL BLOG DE MATE DE AIDA 4º ESO: apuntes de funciones pág. 1 FUNCIONES EL BLOG DE MATE DE AIDA 4º ESO: apuntes de funciones pág. 1 FUNCIONES 1.- DEFINICIÓN DE FUNCIÓN Una función es una relación de dependencia entre dos variables de modo que a cada valor de la primera le

Más detalles

1.- CONCEPTO DE FUNCIÓN

1.- CONCEPTO DE FUNCIÓN .- CONCEPTO DE FUNCIÓN Actividades del alumno/a Explica porqué la siguiente gráfica no corresponde a una función: Porque a un valor de x, por ejemplo x =, le corresponde más de un valor de y. .- CONCEPTO

Más detalles

TEMA 9: FUNCIONES LINEALES Y CUADRÁTICAS

TEMA 9: FUNCIONES LINEALES Y CUADRÁTICAS TEMA 9: FUNCIONES LINEALES Y CUADRÁTICAS 9.1 Función de proporcionalidad mx Ejemplo Representa sobre unos mismos ejes la siguientes funciones de proporcionalidad: 1. 3x. 6x 3. 3x. 6x. 1 3 x 6. 1 3 x 7.

Más detalles

Ejercicio 1.- Ejercicio 2.- Ejercicio 3.-

Ejercicio 1.-  Ejercicio 2.- Ejercicio 3.- Ejercicio 1.- Un grupo de amigos y amigas tiene la costumbre de realizar todos los sábados una excursión. En cada una de ellas suelen utilizar bicicletas durante una parte del trayecto y también hacen

Más detalles

Nombre: Representa las gráficas de ambas funciones en los mismos ejes de coordenadas y haz una interpretación gráfica de la solución del sistema.

Nombre: Representa las gráficas de ambas funciones en los mismos ejes de coordenadas y haz una interpretación gráfica de la solución del sistema. IES ATENEA. 1 er CONTROL. MATEMÁTICAS B. 4º ESO. Nombre: Evaluación: Segunda. Fecha: de febrero de 011 NOTA Ejercicio nº 1.- Calcula la ecuación de la recta que pasa por los puntos A (, 6) y B (,3). 1

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página PRACTICA Representación de rectas ESTÁ RESUELTO EN EL LIBRO Representa las rectas: a) y = x b) y = x c) y = x d) y = a) b) c) d) Representa las rectas: a) y = 0,8x b) y = x c) y =,6x d) y =

Más detalles

TEMA 8 - REPRESENTACIÓN DE FUNCIONES

TEMA 8 - REPRESENTACIÓN DE FUNCIONES Ejercicios Selectividad Tema 8 Representación de funciones Matemáticas CCSSII º Bach 1 TEMA 8 - REPRESENTACIÓN DE FUNCIONES EJERCICIO 1 : Julio 10-11. Optativa (1 + 1,5 + 0,5 ptos) 8 Se considera la función

Más detalles

Una función es una correspondencia única entre dos conjuntos numéricos.

Una función es una correspondencia única entre dos conjuntos numéricos. FUNCIONES Qué es una función? Una función es una correspondencia entre dos conjuntos de números de modo que a cada valor del conjunto inicial, llamado dominio, se le hace corresponder un valor del conjunto

Más detalles

EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:.

EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:. EJERCICIS RESUELTS TEMA 11 1. FUNCINES. FUNCIÓN LINEAL CUADRÁTICA Apellidos y Nombre:.Curso: º E.S.. Grupo:. 1 El coste del recibo del teléfono depende de los minutos hablados y una cuota fija de 1 euros.

Más detalles

FUNCIONES 2º E.S.O. FUNCIONES DE PROPORCIONALIDAD DIRECTA FUNCIONES DE PROPORCIONALIDAD DIRECTA FUNCIONES DE PROPORCIONALIDAD DIRECTA

FUNCIONES 2º E.S.O. FUNCIONES DE PROPORCIONALIDAD DIRECTA FUNCIONES DE PROPORCIONALIDAD DIRECTA FUNCIONES DE PROPORCIONALIDAD DIRECTA FUNCIONES DE PROPORCIONALIDAD DIRECTA FUNCIONES º E.S.O. Ejemplo: En un parque público ha una tienda donde alquilan patines a 0,5 la hora, monopatines a 1 la hora bicicletas a la hora. Patines: = 0,5 horas

Más detalles

6 si x -4 (x+2) 2 si -4 < x -1 4 si x > x+1 si 0 x 1 x si 1 < x < 3 6-x si 3 x 4

6 si x -4 (x+2) 2 si -4 < x -1 4 si x > x+1 si 0 x 1 x si 1 < x < 3 6-x si 3 x 4 . Calcula la derivada de las siguientes funciones:. y = 2-2 +2 2. y = 2-2 2 +2. y = 2 -ln +e 4. y = 2 e 2 5. y = e 6. y = 2 ln 2 7. y = 2-8. y = e. y = 2 + 4. y = ln 2-5. y = 2 2 2 6. y = 2-9. y = e 2

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

1 Las funciones y sus gráficas

1 Las funciones y sus gráficas 1 Las funciones y sus gráficas Página 113 1. Observa la gráfica del helicóptero y responde: a) Qué altura lleva cuando va del embalse al incendio? b) A qué altura estaba a los 0 min? A qué altura baja

Más detalles

Ejemplos de formas de expresar una función

Ejemplos de formas de expresar una función 1.- CONCEPTO DE FUNCIÓN Definición de función Una función es una forma de hacerle corresponder a un número cualquiera x otro número y. Lo que vale la y depende de lo que vale la x. La y se llama variable

Más detalles

MATEMÁTICAS 2º DE ESO

MATEMÁTICAS 2º DE ESO MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad

Más detalles

8Soluciones a los ejercicios y problemas

8Soluciones a los ejercicios y problemas PÁGINA 38 Pág. P RACTICA Interpretación de gráficas Pepe y Susana han medido y pesado a su hijo, David, cada mes desde que nació hasta los meses. Estas son las gráficas de la longitud y del peso de David

Más detalles

Funciones. 1. Indica, de forma razonada, si las siguientes gráficas corresponden a funciones. a) b) c)

Funciones. 1. Indica, de forma razonada, si las siguientes gráficas corresponden a funciones. a) b) c) Funciones 1. Indica, de forma razonada, si las siguientes gráficas corresponden a funciones.. Representa las funciones dadas a partir de las siguientes tablas. 3 1 0 4 4 1 0 1 5 6 3 0 1 3 y 7 1 14 y 6

Más detalles

TEOREMAS DE FUNCIONES DERIVABLES 1. Teorema de Rolle

TEOREMAS DE FUNCIONES DERIVABLES 1. Teorema de Rolle Cálculo _Comisión Año 6 TEOREMAS DE FUNCIONES DERIVABLES Una de las propiedades que poseen las funciones derivables y continuas en intervalos cerrados, expresa que al dibujar la curva de una de ellas y

Más detalles

Tema 5 Inecuaciones y sistemas de inecuaciones

Tema 5 Inecuaciones y sistemas de inecuaciones Tema Inecuaciones y sistemas de inecuaciones. Inecuaciones lineales PÁGINA 9 EJERCICIOS. Comprueba en cada caso si el valor indicado forma parte de la solución de la inecuación. b de la inecuación Sustituimos

Más detalles

9Soluciones a los ejercicios y problemas

9Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Pendiente de una recta Halla la pendiente de cada una de las rectas dibujadas: f () g() h() f() 8 g() 8 h() 8 Halla gráficamente la pendiente de las rectas que pasan por los siguientes

Más detalles

x = 1 Asíntota vertical

x = 1 Asíntota vertical EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

FUNCIONES. Recuerda: Traslaciones de funciones:

FUNCIONES. Recuerda: Traslaciones de funciones: FUNCIONES Recuerda: Una función es una correspondencia entre dos conjuntos (relación entre magnitudes), de forma que a cada elemento del conjunto inicial le corresponde sólo un elemento del conjunto final.

Más detalles

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN:

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: Ejemplo: 1 Dominio Representación de en el intervalo [,] Los puntos que no pertenecen al dominio de una función racional, son aquellos que anulan

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS TEMA 5 APLICACIONES DE LAS DERIVADAS Ejercicios para Selectividad de Detalladamente resueltos Curso 2000 / 2001 José Álvarez Fajardo bajo una licencia Reconocimiento NoComercial CompartirIgual 2.5 Spain

Más detalles

Boletín 6: Funciones -4º ESO- Ejercicio nº 1.- Observa la gráfica de la función y responde:

Boletín 6: Funciones -4º ESO- Ejercicio nº 1.- Observa la gráfica de la función y responde: Boletín 6: Funciones -4º ESO- Ejercicio nº 1.- Observa la gráfica de la función y responde: a) Cuál es su dominio de definición? Y su recorrido? b) Cuáles son los puntos de corte con los ejes? c) Para

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

FUNCIONES 2º E.S.O. COORDENADAS CARTESIANAS COORDENADAS DE UN PUNTO COORDENADAS DE UN PUNTO A = (3, 1) Eje de Ordenadas B = ( 3, 2) (x, y) C = ( 2, 4)

FUNCIONES 2º E.S.O. COORDENADAS CARTESIANAS COORDENADAS DE UN PUNTO COORDENADAS DE UN PUNTO A = (3, 1) Eje de Ordenadas B = ( 3, 2) (x, y) C = ( 2, 4) COORDENADAS CARTESIANAS FUNCIONES 2º E.S.O. COORDENADAS DE UN PUNTO Eje de Ordenadas COORDENADAS DE UN PUNTO A = (3, 1) B = ( 3, 2) y (x, y) C = ( 2, 4) D = (1, 1) X Y x Eje de Abscisas E = (0, 2) F =

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

DEFINICIÓN DE FUNCIONES

DEFINICIÓN DE FUNCIONES EXPERIMENTACIÓN CON DESCARTES EN ANDALUCÍA DEFINICIÓN DE FUNCIONES Ejercicio 1. Dibuja las gráficas siguientes en tu cuaderno. Son funciones? Razona tu respuesta (recuerda la definición de función y mueve

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Página 7 PARA EMPEZAR, REFLEXIONA Y RESUELVE El valor de la función f () = + 5 para = 5 no se puede obtener directamente porque el denominador se hace

Más detalles

A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. ( (

A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. ( ( A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. 1. Calcula el dominio de las siguientes funciones: ( ( ( ( ( ( 2. Calcula la imagen de las siguientes

Más detalles

Podemos razonar de dos formas distintas: Resolución 1: Hallamos la pendiente y la ordenada en el origen y utilizamos la forma y = mx + n.

Podemos razonar de dos formas distintas: Resolución 1: Hallamos la pendiente y la ordenada en el origen y utilizamos la forma y = mx + n. . Escribe la ecuación de esta recta: A Y Podemos razonar de dos formas distintas: Resolución : Hallamos la pendiente y la ordenada en el origen y utilizamos la forma y = mx + n. Pendiente: cuando x aumenta,

Más detalles

Nombre: + x + 2, se pide:

Nombre: + x + 2, se pide: IES ATENEA er CONTROL MATEMÁTICAS B 4º ESO GRUPO: BC Nombre: Evaluación: Segunda Fecha: 6 de febrero de 00 NOTA Ejercicio nº - a) Calcula el dominio de definición de función f() b) Calcula la tasa de variación

Más detalles

123 ESO. Es completamente utópico aprender matemáticas sin resolver ejercicios. Godement. Matemático

123 ESO. Es completamente utópico aprender matemáticas sin resolver ejercicios. Godement. Matemático Es completamente utópico aprender matemáticas sin resolver ejercicios 2 ESO Godement. Matemático ÍNDICE: DISTANCIA DE SEGURIDAD. VARIABLE 2. TABLAS. GRÁFICAS. PROPIEDADES 5. FÓRMULA DE UNA FUNCIÓN 6. FUNCIÓN

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

1. [2014] [EXT] Sean las funciones f(x) = eax +b

1. [2014] [EXT] Sean las funciones f(x) = eax +b 1. [01] [ET] Sean las funciones f(x) = eax +b y g(x) = + 3x+. a) Determine el dominio y el recorrido de la función g. b) Calcule para qué valores de a y b las gráficas de las dos funciones son tangentes

Más detalles

Límites. Continuidad.

Límites. Continuidad. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Límite finito cuando x tiende a infinito (1) Límite finito cuando x tiende a infinito (2) Se dice que el límite de la función f(x) cuando

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

TEMA 7. FUNCIONES. - Variables dependiente e independiente.

TEMA 7. FUNCIONES. - Variables dependiente e independiente. TEMA 7. FUNCIONES 7.1. Definiciones. - Función. - Variables dependiente e independiente. - Imagen y antiimagen. - Interpretación de gráficas. - Dominio y recorrido. 7.2. Propiedades de las funciones. -

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página PRACTICA Interpretación de gráficas En un libro de pesca hemos encontrado la siguiente gráfica que relaciona la resistencia de un tipo de hilo con su grosor: a) Qué grosor debe tener RESISTENCIA

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

Una función dada gráficamente proporciona una visión de conjunto de la evolución de una variable al cambiar la otra.

Una función dada gráficamente proporciona una visión de conjunto de la evolución de una variable al cambiar la otra. FUNCION NUMERICA: 5º Año-Economía- El término función proviene del latín fucto que significa acto de realizar y fue utilizado por Leibnitz en el año 1694, referido a curvas. Un siglo más tarde Euler veía

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la

1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la 1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la función f(t) = t3 3-22t2 +448t-2600, siendo t el tiempo medido en semanas,

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE

5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE 5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE UNA FUNCIÓN EN UN PUNTO Y APLICACIONES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.2.1. El problema de la tangente. Derivada.

Más detalles

TEMA 8. FUNCIONES (I). GENERALIDADES

TEMA 8. FUNCIONES (I). GENERALIDADES TEMA 8. FUNCIONES (I). GENERALIDADES Contenido 1. Definición y formas de definir una función 2 1.1. Definición de función 2 1.2. Formas de definir la función: 4 1.2.1. A partir de una representación gráfica

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

83 ESO. A la izquierda, nadie me quiere, a la derecha, quién me viere! De un lado ni entro ni salgo y del otro mucho valgo Refranero

83 ESO. A la izquierda, nadie me quiere, a la derecha, quién me viere! De un lado ni entro ni salgo y del otro mucho valgo Refranero 8 ESO A la izquierda, nadie me quiere, a la derecha, quién me viere! De un lado ni entro ni salgo del otro mucho valgo Refranero ÍNDICE:. FUNCIONES 2. FORMAS DE EXPRESAR UNA FUNCIÓN. PROPIEDADES Cordel

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES Tema 4 Funciones elementales Matemáticas CCSSI º Bachillerato TEMA 4 FUNCIONES ELEMENTALES FUNCIÓN EJERCICIO : Indica cuáles de las siguientes representaciones corresponden a la gráfica de una función.

Más detalles

FUNCIONES LINEALES Y CUADRÁTICAS

FUNCIONES LINEALES Y CUADRÁTICAS . FUNCIONES LINEALES FUNCIONES LINEALES CUADRÁTICAS Aquéllas cua fórmula es un polinomio de grado. = + 9ºESO Se corresponden con los fenómenos de proporcionalidad; es decir, que la variación de la '' sea

Más detalles

Bloque 3. Funciones. 1. Análisis de funciones

Bloque 3. Funciones. 1. Análisis de funciones Bloque 3. Funciones 1. Análisis de funciones 1. Concepto de función Una función es una relación entre dos magnitudes, de tal manera que a cada valor de la primera le corresponde un único valor de la segunda,

Más detalles

FUNCIONES y = f(x) ESO3

FUNCIONES y = f(x) ESO3 Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

MATEMÁTICA Tercer año 2017 Práctica 0

MATEMÁTICA Tercer año 2017 Práctica 0 Escuela Superior de Comercio Carlos Pellegrini UBA MATEMÁTICA Tercer año 7 Práctica Irracionales Reales Operaciones con irracionales Ecuaciones e inecuaciones en R Determiná cuáles de las siguientes epresiones

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS TEMA 7 7.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO 7.2 FUNCIÓN DERIVADA 7.3 REGLAS DE DERIVACIÓN 7.4 ESTUDIO DE LA DERIVABILIDAD DE UNA FUNCIÓN DEFINIDA D A TROZOS APLICACIONES DE LAS DERIVADAS 7.5 RECTA TANGENTE

Más detalles

Solución Fácilmente encontrarás que el denominador se anula para x = 2 y x = 3 luego pondremos que: D(y) = R - { 2, 3

Solución Fácilmente encontrarás que el denominador se anula para x = 2 y x = 3 luego pondremos que: D(y) = R - { 2, 3 Dominio de una función Funciones elementales Funciones lineales Interpolación lineal Funciones cuadráticas (tratadas en tema anterior ) Funciones de proporcionalidad inversa Funciones definidas a trozos

Más detalles

MÓDULO 6: REPRESENTACIÓN GRÁFICA

MÓDULO 6: REPRESENTACIÓN GRÁFICA MÓDULO 6: REPRESENTACIÓN GRÁFICA Física Plano cartesiano. Pares ordenados. Variable dependiente e independiente. Tablas de valores. Gráficas. Sentido físico. Gráficas por tramos. Cambios de variable. Función

Más detalles

Idea de Derivada. Tasa de variación media e instantánea

Idea de Derivada. Tasa de variación media e instantánea TEMA 6. Derivadas Nombre CURSO: BACH CCSS Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años)

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

TEMA 8. FUNCIONES. 2. Esta es la gráfica de la variación de altura de los cestillos de una noria a lo largo del tiempo.

TEMA 8. FUNCIONES. 2. Esta es la gráfica de la variación de altura de los cestillos de una noria a lo largo del tiempo. TEMA 8. FUNCIONES. 1. La siguiente gráfica muestra el volumen de aire que entra y sale de los pulmones en una prueba de espirometría realizada a un paciente. a) Cuáles son las variables independiente y

Más detalles

Funciones cuadráticas MATE 3171

Funciones cuadráticas MATE 3171 Funciones cuadráticas MATE 3171 Funciones cuadráticas Una función, f, es una función cuadrática si f(x) = ax 2 + bx + c, a, b, y c se llaman coeficientes. o a es el coeficiente principal o b es el coeficiente

Más detalles

ANALISIS MATEMATICO I (2012)

ANALISIS MATEMATICO I (2012) ANALISIS MATEMATICO I (0) TRABAJO PRÁCTICO Funciones cuadráticas Ejercicio. Hacer una representación gráfica aproimada de las siguientes funciones cuadráticas:. f() =. f() = + 4 3. f() = +, Ejercicio.

Más detalles

Unidad 6: Funciones reales de variable real.

Unidad 6: Funciones reales de variable real. Funciones reales de variable real 1 Unidad 6: Funciones reales de variable real. 1.- Concepto de función. Expresión analítica de una función. Variables x e y Existe relación entre x e y No hay relación

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS UNIDAD 6 LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Página 38. Representa gráficamente las siguientes funciones y di, de cada una de ellas, si es continua o discontinua: < 0 a) y = + 3 < b) y

Más detalles

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS FUNCIONES EXPONENCIALES Y LOGARÍTMICAS CARACTERÍSTICAS DE LAS FUNCIONES EXPONENCIALES Su expresión algebraica es y = a x donde a > 0 y siempre a 1 Dominio: Dom(f) = IR Recorrido: Im(f) = IR + Es una función

Más detalles

EJERCICIOS DE SELECTIVIDAD FUNCIONES

EJERCICIOS DE SELECTIVIDAD FUNCIONES EJERCICIOS DE SELECTIVIDAD FUNCIONES Representación gráfica Monotonía Curvatura - Asíntotas 1. Dadas las funciones siguientes, 6 + 1 a) b) = c) = 1 + d) + 4 1 = e) = f) = 1 g) + 1 + 1 = h) = i) =, 1 +

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

TABLAS Y GRÁFICAS PROFESOR: RAFAEL NÚÑEZ NOGALES. 1.- COORDENADAS EN EL PLANO Práctica 1

TABLAS Y GRÁFICAS PROFESOR: RAFAEL NÚÑEZ NOGALES. 1.- COORDENADAS EN EL PLANO Práctica 1 TABLAS Y GRÁFICAS 1 1.- COORDENADAS EN EL PLANO Práctica 1 Una entrenadora de baloncesto analiza a sus pívots en función de su efectividad en el tiro de dos puntos, en el tiro de tres puntos, en el tiro

Más detalles

Qué estudiaremos? Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A. Funciones lineales

Qué estudiaremos? Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A. Funciones lineales Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A Qué estudiaremos? Repasamos las funciones lineales. La función cuadrática. Estudio general

Más detalles

Senos (truco): (Coseno truco = pero el cero ponerlo del 90 a la izquierda y /2.

Senos (truco): (Coseno truco = pero el cero ponerlo del 90 a la izquierda y /2. SENOS, COSENOS Y TANGENTES (REPASO): Grados Radianes Seno Coseno Tangente 0 0 0 1 0 30 pi / 6 un medio Raíz de 3 / 2 raíz de 3 / 3 45 pi / 4 raíz de 2 / 2 Raíz de 2 / 2 1 60 pi /3 raíz de 3 / 2 Un medio

Más detalles

APELLIDOS Y NOMBRE:...

APELLIDOS Y NOMBRE:... 1º BACHILLERATO Fecha: 6-09-011 PRUEBA INICIAL APELLIDOS Y NOMBRE:... NORMAS El eamen se realizará con tinta de un solo color: azul ó negro No se puede usar corrector Se valorará potivamente: ortografía,

Más detalles

Interpretación de gráficas 1

Interpretación de gráficas 1 Interpretación de gráficas 1 Dos ejemplos sencillos. 1. El precio de un bolígrafo en la papelería cercana es de 0,30. Calcula y escribe en la tabla siguiente el precio de los bolígrafos que se indican.

Más detalles

Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:.

Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:. Representa la función que relaciona el área de un triángulo rectángulo isósceles la longitud del cateto. a) Cuál es la variable dependiente? b) la variable independiente? = a) La variable independiente

Más detalles

TEMAS 4 LAS FUNCIONES ELEMENTALES

TEMAS 4 LAS FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES MATEMÁTICAS CCSSI º Bach. TEMAS 4 LAS FUNCIONES ELEMENTALES Son funciones? EJERCICIO : Indica cuáles de las siguientes representaciones corresponden a la gráfica de una función.

Más detalles

Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento.

Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento. . RECTAS y FUNCIONES AFINES Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento. a) y = c) y = e) y = b) y = d) y = + f) y = a) No es lineal. c)

Más detalles

s(t) = 5t 2 +15t + 135

s(t) = 5t 2 +15t + 135 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000, 1-1-000 (A) Primer parcial (1) Se lanza una pelota hacia arriba a una velocidad de 15 m/seg desde el borde de un acantilado a 15 m arriba del suelo.

Más detalles

La concentración de ozono contaminante, en microgramos por metro cúbico, en una

La concentración de ozono contaminante, en microgramos por metro cúbico, en una ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90

Más detalles

x 3 si 10 <x 6; x si x>6;

x 3 si 10 <x 6; x si x>6; CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 A Primer parcial + 1 +8 1 a Trace su gráfica b Determine su dominio, rango y raíces Sean si 10 < 6; f

Más detalles

Ficha 1. Formas de expresar una función

Ficha 1. Formas de expresar una función Ficha 1. Formas de expresar una función 1. En unas instalaciones deportivas cobran 5 euros por la entrada, que da derecho a la utilización de todas las dependencias salvo las pistas de tenis, por las que

Más detalles

ESTUDIO Y TIPOS DE FUNCIONES

ESTUDIO Y TIPOS DE FUNCIONES ESTUDIO Y TIPOS DE FUNCIONES I. Conceptos fundamentales de una función Una función es la relación entre dos magnitudes, de modo que a cada valor de x le corresponde un único valor de y. Las funciones poseen

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 017 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

Las únicas funciones cuyas gráficas son rectas son las siguientes:

Las únicas funciones cuyas gráficas son rectas son las siguientes: Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles
Sitemap