Fisicoquímica. Carrera: BQC Participantes. Representantes de las academias de Ingeniería Bioquímica.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fisicoquímica. Carrera: BQC Participantes. Representantes de las academias de Ingeniería Bioquímica."

Transcripción

1 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Fisicoquímica Ingeniería Bioquímica BQC HISTORIA DEL PROGRAMA. Lugar y fecha de elaboración o revisión Participantes Observaciones (cambios o justificaciones) Instituto Tecnológico de Tuxtepec del 17 al 21 de Enero de Institutos Tecnológicos de Morelia, Tehuacán, Tepic. Abril del Representantes de las academias de Ingeniería Bioquímica. Academia de Ingeniería Bioquímica. Reunión Nacional de Evaluación Curricular de la Carrera de Ingeniería Bioquímica. Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación. Instituto Tecnológico de Tepic del 25 al 29 de abril del Comité de Consolidación de la carrera de Ingeniería Bioquímica. Definición de los programas de estudio de la carrera de Ingeniería Bioquímica.

2 3.- UBICACIÓN DE LA ASIGNATURA. a). Relación con otras asignaturas del plan de estudio Anteriores Posteriores Asignaturas Temas Asignaturas Temas Física II Termodinámica Matemáticas II Métodos numéricos. Introducción. Primera ley de la termodinámica. Integrales Indefinidas y Métodos de Integración. Solución de ecuaciones algebraicas. Operaciones Unitarias I, II y III. Cinética Química y Biológica. Ingeniería de Bioseparaciones. Catálisis Cinética enzimática. Cinética microbiana. Procesos de separación por fenómenos de superficie. Solución de sistemas de ecuaciones lineales y no lineales. b). Aportación de la asignatura al perfil del egresado. Proporcionar los conocimientos físico-químicos que rigen a los diversos equilibrios de fases y fenómenos superficiales que permitirán diseñar procesos de transformación de los recursos naturales.

3 4.- OBJETIVO(S) GENERAL(ES) DEL CURSO. Proporcionará al estudiante los fundamentos de los equilibrios de fases, estados de dispersión, fenómenos de superficie y propiedades coligativas en el diseño termodinámico de procesos y equipos de la Ingeniería Bioquímica. 5.- TEMARIO. Unidad Temas Subtemas 1 Equilibrio de fases en sistemas de un solo o más componentes. 1.1 Desigualdad de Clausius Concepto de equilibrio termodinámico Condiciones de equilibrio y espontaneidad La energía libre de Gibbs Potencial químico. 1.2 Sistemas de un solo componente Aplicación de los criterios generales del equilibrio Ecuación de Clapeyron Curvas de fusión Curvas de ebullición y sublimación Diagramas de fases. 1.3 Fugacidad, concepto y cálculo Métodos del volumen residual Método de la ecuación de estado.

4 1.3.3 Método de la correlación generalizada Coeficiente de fugacidad. 1.4 Sistemas multicomponentes Concepto de propiedad molar parcial Soluciones ideales Soluciones binarias ideales Ley de Raoult Diagramas de temperaturacomposición Soluciones no ideales. Azeotropía Actividad y coeficiente de actividad Elección del estado de referencia Ley de Henry Cálculo del coeficiente de actividad A partir de datos experimentales Regla de Bakhuis- Roozeboom A partir de ecuaciones semiempíricas (Wilson,NTRL, Van Laars, entre otros). 1.5 Equilibrio líquido líquido en dos componentes. 1.6 Equilibrio sólido líquido en dos componentes. 1.7 Sistemas de tres componentes 2 Propiedades coligativas. 2.1 Propiedades coligativas en soluciones no electrolítica y

5 electrolíticas Disminución de la presión de vapor Aumento del punto de ebullición Disminución del punto de congelación Presión osmótica. 2.2 Aplicaciones. 3 Fenómenos de superficie. 3.1 Fenómenos interfaciales Condiciones en una sola fase La tensión dentro de una superficie Cinética de las moléculas en la superficie Tensión superficial y curvatura Energía superficial total Entropía superficial Tensión Interfacial Entropía interfacial Cohesión y adhesión Relación entre tensión superficial y tensión interfacial Tratamiento de Gibas Relación de Antonoff.

6 3.1.4 Angulo de contacto Definiciones Magnitud de ángulos de contactos de líquidos en sólidos Adhesión de líquidos a sólidos Medidas del ángulo de contacto Métodos de la placa Método del balance húmedo Medición de la tensión superficial e interfacial Método del capilar Método del anillo Método de la gota pesada. 3.2 Adsorción Fundamentos Tipos de interacción de adsorción Isotermas de adsorción Histéresis Ecuación de Freundlich Isotermas de Langmuir Ecuación de BET Aplicaciones.

7 4 Estados de agregación de la materia. 4.1 Potencial electrocinético Doble capa electrostática Tratamiento analítico Influencia de iones sobre la doble capa. 4.2 Estado coloidal Introducción Clasificación de sistemas coloidales Características estructurales Preparación y purificación de sistemas coloidales. 4.3 Propiedades cinéticas de los sistemas coloidales Movimiento Browniano Difusión. 4.4 Propiedades ópticas Efecto Tyndall Medida de dispersión de la luz Disipación de la luz por moléculas pequeñas Interferencia interpartícula. 4.5 Sistemas dispersos Generalidades.

8 4.5.2 Soles liófobos Propiedades ópticas y eléctricas Determinación del tamaño de partícula Precipitación por electrolitos Sensibilización y protección Soles liófilos Viscosidad Tensión superficial y formación de espuma Signo de la carga eléctrica Estabilidad Solificación y coacervación Geles Estructura Imbibición y sinéresis Tixotropía Precipitación en geles Electrolitos coloidales Micelas iónicas Propiedades coloidales Jabones.

9 4.5.6 Organosoles. 4.6 Preparación de soluciones coloidales Métodos de condensación Métodos de dispersión. 4.7 Emulsiones Introducción Clasificación de emulsiones Emulsificantes Inversión de fase Estabilidad y ruptura. 4.8 Espuma Características Estabilidad y ruptura. 4.9 Soluciones de macromoléculas Biomoléculas de comportamiento coloidal Asociación de macromoléculas Coagulación Gelación Aplicaciones. 5 Equilibrio químico.

10 5.1. Criterio de equilibrio de una reacción química 5.2. Determinación de la constante de equilibrio químico en sistemas ideales y no ideales, en reacciones homogéneas y heterogéneas Constante de equilibrio en función de la presión, concentración para reacciones homogéneas y heterogéneas Balances en el equilibrio (Determinación del valor de la constante de equilibrio, determinación del grado de conversión) 5.5. Efecto de la temperatura, presión, concentración, gas inerte en la constante de equilibrio 5.6. Equilibrio químico en reacciones complejas. 6.- APRENDIZAJES REQUERIDOS Cálculo diferencial e integral. Ecuaciones diferenciales ordinarias exactas. Leyes de la termodinámica. Sistemas de unidades de conversión. Integración gráfica. 7.- SUGERENCIAS DIDÁCTICAS Utilizar tanto el sistema de unidades inglés como el internacional en la solución de problemas. Fomentar la investigación documental de la importancia de los equilibrios de fases en los procesos de transformación. Proponer la elaboración de resúmenes, mapas conceptuales y mentales de temas seleccionados de la bibliografía. Fomentar dinámicas grupales en la que se defiendan y discutan ideas, leyes y conceptos. Organizar talleres de resolución de problemas e interpretación de resultados relacionados con cada uno de los temas del programa. Programar visitas a industrias con el fin de conocer los criterios de separación usados en la industria de la transformación. Organizar mesas redondas y seminarios para la presentación de temas selectos de la materia en cuestión. Implementar prácticas de laboratorio.

11 8.- SUGERENCIAS DE EVALUACIÓN Utilizar tanto el sistema de unidades inglés como el internacional en la solución de problemas. Fomentar la investigación documental de la importancia de los equilibrios de fases en los procesos de transformación. Proponer la elaboración de resúmenes, mapas conceptuales y mentales de temas seleccionados de la bibliografía. Fomentar dinámicas grupales en la que se defiendan y discutan ideas, leyes y conceptos. Organizar talleres de resolución de problemas e interpretación de resultados relacionados con cada uno de los temas del programa. Programar visitas a industrias con el fin de conocer los criterios de separación usados en la industria de la transformación. Organizar mesas redondas y seminarios para la presentación de temas selectos de la materia en cuestión. Implementar prácticas de laboratorio. 9.- UNIDADES DE APRENDIZAJE Unidad 1: EQUILIBRIO DE FASES EN SISTEMAS DE UN SOLO O MÁS COMPONENTES. Objetivo Educacional Actividades de Aprendizaje Fuentes de Información El estudiante comprenderá las relaciones de equilibrio, los modelos teóricos y su confrontación con la realidad. Preparar monografías, presentaciones, ejemplos de diferentes sistemas con equilibrio de fases, resaltando los aspectos prácticos, resolución de problemas, elección de los modelos más idóneos para un sistema dado. Explicar el concepto de potencial químico y su importancia en las propiedades termodinámicas de las mezclas y como criterio de equilibrio. Explicar los criterios físicos de equilibrio de fases para una sustancia pura. Calcular grados de libertad en donde se realicen cambios de fases. Calcular el calor de cambio de fase y su intervalo de aplicación (Clapeyron y Clausis-Clapeyron). Calcular los calores de vaporización usando las ecuaciones de Clapeyron, 1, 2, 3, 4, 6, 7, 8, 9, 11,10, 21, 22, 23

12 Clausius - Clapeyron, Watson, Riedel, entre otras a diferentes temperaturas y presiones. Investigar el significado físico de las propiedades parciales molares. Investigar la ley de Raoult, sus desviaciones y ejemplos para cada caso. Graficar datos del equilibrio liquidovapor para sistemas binarios ideales y reales a partir de los parámetros de modelos de solución reportados en bibliografía (Margules, Van Laar. Wilson). Investigar el método de puntos de niebla para la construcción de la curva de inmiscibilidad (líneas de unión o de reparto), representación grafica de sistemas ternarios (diagramas de Gibbs y rectangulares). Representar gráficamente información experimental de al menos dos sistemas ternarios en diagramas de Gibbs y en diagramas rectangulares. Unidad 2: PROPIEDADES COLIGATIVAS. Objetivo Educacional Actividades de Aprendizaje Fuentes de Información Aplicará las ecuaciones correspondientes para el cálculo del efecto de la variación de la concentración sobre las propiedades coligativas. Desarrollar casos prácticos donde se estimen propiedades coligativas y proponer aplicaciones prácticas, resolución de problemas. Investigar las propiedades coligativas y sus aplicaciones. Analizar el efecto de adicionar un soluto no volátil en la presión de vapor sobre el punto de ebullición y de congelación de una solución. y calcular la variación. Calcular los pesos moleculares de 1, 3, 6, 7, 21, 22, 23

13 solutos de no electrolitos a través de las propiedades coligativas. Analizar el efecto que se tiene en la presión osmótica por la adición de un soluto en un solvente puro. Estimar la presión osmótica en soluciones no electrolíticas. Unidad 3: FENÓMENOS DE SUPERFICIE. Objetivo Educacional Actividades de Aprendizaje Fuentes de Información Comprenderá los factores determinantes de los fenómenos de superficie y cómo se modelan algunos sistemas biológicos. Exponer los protocolos para la realización de experimentos en el laboratorio. Investigar el concepto de fase. Analizar los principios energéticos en los que se basa el concepto de tensión superficial. Investigar el concepto de tensión superficial. Comparar los términos de cohesión y adhesión basándose en el concepto de tensión interfacial. Explicar la relación entre tensión superficial, y tensión interfacial, basándose en el tratamiento de Gibbs o la relación de Antonoff. Relacionar la diferencia en magnitud del ángulo de contacto (>90, =90, <90) con la adhesión de líquidos y sólidos. Explicar los diferentes métodos para determinar la tensión superficial e interfacial. Comparar dos métodos de medición del ángulo de contacto. El termino adsorción y adsorbato. Identificar los tipos de fuerzas que intervienen en la adsorción. Analizar la ecuación de Henry y sus limitaciones. 1, 2, 13, 14, 15, 16, 17, 22 y 23

14 Diferenciar la adsorción localizada y deslocalizada. Deducir la ecuación de Langmuir. Investigar la adsorción polimolecular. Representar las diferentes formas de isotermas de adsorción de vapores. Explicar la presión de gas dentro de una burbuja esférica. Explicar la elevación capilar de un líquido. Deducir la ecuación de adsorción de Gibbs. Investigar sustancias tensoactivas e inactivas y su relación con el concepto de adsorción. Relacionar las ecuaciones de estado y las isotermas de adsorción. Deducir la variación de energía libre en la adsorción. Relacionar la tensión interfacial con la adsorción de adsorbentes porosos. Establecer la diferencia entre la adsorción en sólidos y la adsorción en soluciones. Unidad 4: ESTADOS DE AGREGACIÓN DE LA MATERIA. Objetivo Educacional Actividades de Aprendizaje Fuentes de Información Identificará los diferentes estados de agregación, enfatizando los de sistemas biológicos. Identificará los diferentes tipos de coloides que pueden presentarse en los sistemas biológicos y basándose en los conocimientos de éstos Investigar el potencial Z y emplearlo para la caracterización de sistemas dispersos. Investigar el potencial Z y emplearlo para la caracterización de sistemas dispersos. Relacionar las propiedades cinéticas de los sistemas coloidales con sus características generales. Explicar las propiedades ópticas de los sistemas coloidales en función de sus características generales. Comparar los sistemas coloidales con 1, 2, 13, 14, 15, 16, 17, 19, 20, 22, 23

15 dar ejemplos de su aplicación en la industria biotecnológica. las soluciones verdaderas a través de sus características generales. Comparar los sistemas coloidales con las soluciones verdaderas a través de sus características generales. Diferenciar las sales de los geles y las sales liófobas de las sales liófilas en función de las características particulares de cada una de ellas. Establecer los mecanismos de estabilización, desestabilización y protección de los sistemas coloidales. Relacionar la carga eléctrica de moléculas iónicas con su comportamiento. Explicar las formas de preparación de disoluciones coloidales y su aplicación en la producción de productos biológicos (alimentos, bebidas, medios de cultivo). Investigar el concepto de emulsión y de emulsificantes. Explicar la importancia de las emulsiones en la industria biotecnológica, incluyendo estabilización y ruptura. Explicar la importancia de la formación de espumas (beneficios y prejuicios). Explicar el comportamiento de soluciones de biomoléculas con base en el comportamiento general de los sistemas coloidales. Analizar los conceptos establecidos para sistemas coloidales en la industria biotecnológica a través de ejemplos concretos. Unidad 5: EQUILIBRIO QUÍMICO. Objetivo Educacional Actividades de Aprendizaje Fuentes de Información Determinará la Elaborar resumen de los conceptos de

16 constante de equilibrio en un sistema ideal y no ideal. Determinará el grado de conversión de una reacción química. equilibrio químico, reacción homogénea y heterogénea, constante de equilibrio, grado de conversión. Discutir el efecto que producen: la temperatura, presión y adición de gases inertes, así como las ecuaciones empleadas en su cálculo para ser discutidos en clase. Resolver problemas de constantes de equilibrio en reacciones homogéneas y heterogéneas teniendo como variables la temperatura, concentración, adición de gases inertes y grado de conversión. 2, 5, 21, FUENTES DE INFORMACIÓN 1. Atkins, Peter W. Fisicoquímica. México: Fondo Educativo Interamericano, Castellan, Gilbert W. Fisicoquímica. Bogotá: Fondo Educativo Interamericano, Henley E.J., Seader J.D. Operaciones de separación por etapas de equilibrio en ingeniería química. Barcelona: Reverté, Huang Francis. Ingeniería Termodinámica. Fundamentos y Aplicaciones CECSA 5. Levine. Fisicoquímica. 5 edición. Mc. Graw-Hill. 2004

17 6. Moore W.J. Química Física. URMO Perry Chilton. Manual de Ingeniero Químico. Sexta Edicion Mc. Graw- Hill Reid Poling Prausnitz. The Properties of Gases and Liquids. 4a. edition. Mc. Graw-Hill Smith J. M. Van Ness Abbott. Introducción a la Termodinámica en Ingeniería Química. Mc. Graw-Hill Sexta edición Shoichiro Nakamura. Métodos Numéricos con Software. Prentice Hall Stanley M. Walas Phase Equilibria in Chemical Engineering.. Butterworth-Heinemann Treybal R. Operaciones de Transferencia de Masa. Mc. Graw-Hill Shaw D.J. Introduction to Colloid and Surface Chemistry. Butterworth Davies J. T. & Rideal E. K. Interfacial Phenomena.. Academic Press. 15. Graham M. D. Food Colloids. AVI Publishing Co Akers R. J. Foams. Academic Press

18 17. Smith A. L. Theory and Practice of Emulsion Technology. Society of Chemical Industry Bikerman J. J. Foams. Springer-Verlag Friberg S. Food Emulsion. Marcel Dekker Adamson A. W. Physical Chemistry of Surfaces. John Wiley and Sons, Inc David W. Ball. Fisicoquímica. International Thomson, K. J. Laidler, J. H. Meiser, Fisicoquímica. CECSA, México Jiménez Vargas-Macarulla. Fisicoquímica Fisiológica. Interamericana PRÁCTICAS Destilación. Determinación del calor de vaporización. Determinación del aumento del punto de ebullición de una solución. Determinación de la presión osmótica. Determinación de la tensión superficial, ángulo de contacto. Determinación de la presión de vapor. Determinación de la estabilidad de una espuma. Elaboración de una emulsión.

Sitemap